Is a CT Scan Needed for Pedicle Screws Crossing the Midline?

Jestin Williams, MD; Peter D’Amore, MD; Manaf H. Younis, MD, MPH; Andrew King, MD, FACS; Carter Clement, MD, MBA

1LSU Health New Orleans, New Orleans, LA; 2Children’s Hospital New Orleans, New Orleans, LA

Abstract:
Pedicle screws are safe implants used for various spinal deformities in the pediatric population. Several studies have evaluated variations in pedicle anatomy, parameters to detect pedicle breach, and the need for postoperative computerized tomography (CT) scan to confirm screw placement. Some have opined that if the screws at one level cross on a posterior-anterior (PA) radiograph, there must be a medial pedicle breach. The purpose of this report is to review an example of spine fusion and instrumentation in a male patient with Scheuermann’s Kyphosis. Relatively long pedicle screws were used, and postoperative radiographs showed screws crossing the midline at several levels. We ordered a CT scan that demonstrated several screw tips crossing midline without breaching the medial cortex. In conclusion, long pedicle screws are not necessarily mal-positioned if they cross the midline, especially if a far-lateral entry site has been used.

Key Concepts:
• Crossing-midline pedicle screws do not always indicate a medial wall breach.
• CT scan is not mandatory to check pedicle screws that cross midline in the setting of normal neuromonitoring, intact neurologic exam, and solid medial walls during intraoperative probing.
• Large patient anatomy facilitates medialization of pedicle screw tips.
• A relatively lateral pedicle screw starting point allows higher maximal insertional arc and increased medialization of screw tips.

Introduction
Posterior spine fusion (PSF) with pedicle screws (PS) allows fixation through all three columns of the spine and has become a mainstay of surgical treatment. Mal-positioned screws, with an incidence of 3-44%, is one of the main risks of PS placement as it may cause neurovascular injury. The risk of injury from medial pedicle wall breach increases in deformed vertebrae when placed at the apex of the curve and in the thoracic spine. When assessing pedicle screw position intraoperatively, there are different modalities employed: pedicle wall palpation, fluoroscopy, intraoperative neuromonitoring (IONM), pedicle screw stimulation, and intraoperative CT scan. During surgery, the appearance of midline-crossing screws on a PA image raises concern for screws breaching the medial cortex. In such instances, the screw is usually removed, and the pedicle is probed for a breach. If there is no evidence of a breach,
the screw may be reinserted or repositioned. If there is definitive evidence of a medial breach, the screw should be repositioned, left out, or another modality of fixation can be employed (e.g., cables, wires, or hooks). On postoperative radiographs, some advocate that if a pedicle screw crosses the midline or if the two screw tips at one level appear to touch, a CT should be obtained to determine whether a breach is present. CT scans expose patients to radiation and are expensive, so it is optimal to avoid this test when possible.

We present a case of a heavy-built male with Scheuermann’s Kyphosis who underwent PSF. Pedicle screws were noted to cross the midline on the postoperative radiographs, and a CT scan was performed to evaluate for medial wall breaches. Based on this experience, this paper aims to outline parameters that should dissuade one from ordering a postoperative CT scan regardless of plain imaging.

Case

A 16-year-old healthy male presented for evaluation of worsening kyphosis over the past 2 years. He reported intermittent mid-back pain, but it did not limit his activities, including high school football. He denied radicular symptoms. Physical exam was benign except for exaggerated kyphosis with Adams forward bending test. Radiographic workup consisted of a PA, Lateral, and bending scoliosis x-rays which demonstrated an 88 degrees lower thoracic kyphotic angle that corrected to 40 degrees on bending films, with the apex at T10 and anterior wedging at three consecutive thoracic vertebrae of more than 5 degrees (Figures 1-2). He was diagnosed with Type II Scheuermann’s Kyphosis.

PSF with apical Ponte osteotomies was indicated from T4-L3 to prevent progression. After standard approach including facetectomies, pedicle screws were placed in the following manner: burr to mark the entry point on the cortex, awl to create pedicle screw path, path checked for wall integrity with a ballpoint probe, then appropriate size screw was inserted. Medicrea brand instrumentation was employed (Medtronic, Dublin, Ireland). After all screws had been inserted, their positions were checked with PA and lateral fluoroscopy and triggered electromyography (EMG) thresholds were

Figure 1. Standing scoliosis radiographs using EOS imaging system A) PA view B) Lateral view

Figure 2. Lateral extension radiograph taken while supine resting over a posterior bolster
measured. Threshold levels >6mA and >10mA were used to ensure appropriate placement of thoracic and lumbar PS, respectively. There was no concern for breach with probing and no screws demonstrated concerning thresholds with triggered EMG. Radiographs demonstrated that screws crossed the midline at T6-T9 and were in very close proximity at T4 and T5; the right T9 screw was most notable. This screw was taken out, and the path was reprobed, demonstrating a solid medial wall. The screw was then reinserted and restimulated; the threshold remained within normal limits. Width and size of screws used at their corresponding levels are shown in Table 1.

Rods were contoured and inserted, final reduction maneuvers were applied, and final tightening was performed. Final IONM demonstrated no abnormalities. The spine was decorticated using a burr, allogenic and autologous bone graft placed, and the wound was closed in standard layered fashion. The patient was extubated and transferred to the PACU without any adverse events.

Standard postoperative radiographs redemonstrated pedicle screws crossing midline at several levels, most prominently at T9 (Figure 3). To assess screw position, we elected to perform a CT scan (See Video), which demonstrated all screws traversing the paths of the pedicles. Due to metal artifact, minor medial breach could not be definitively ruled out nor confirmed for two screws (right T7 and T9; Figures 4 and 5, respectively). However, suspicion for breaches at these levels was low because the most medially directed implant (right T9) was removed and reprobed intraoperatively with a very reassuring medial wall. Most likely, the screws abutted the medial wall which was obscured by artifact, though penetration or, more likely, expansion of the wall is possible. Breach was ruled out at all other levels on the CT, including several screws with tips crossing the midline (left T4, T6, and T7 and right T6; See Video). The remainder of his course was uneventful. He followed our standard PSF postoperative protocol with the goals of minimizing narcotic pain medication and early ambulation (postoperative day (POD) 1). He progressed well,
remained neurologically intact, and did not have any complaints of radicular or myelopathic symptoms. He was discharged on POD 4 in stable condition, ambulating without assistance, tolerating oral (PO) diet, and with pain adequately controlled on PO medication.

Discussion
Assessment of pedicle screw placement, both intra and postoperatively, is of high importance due to the risk of damaging important neurovascular structures. Pedicle probing, IONM, threshold EMG testing, and intraoperative fluoroscopy have proven useful in detecting screw malposition and breach.8,15,18-20,25 If all the above parameters are normal, but a screw crosses the midline on radiographs, is a CT scan still warranted? The case presented here suggests the answer is no.

Our patient weighed 269 pounds and was 6 feet tall (BMI 28.1 kg/m²). He was above the 97th percentile in weight and roughly 90th percentile in height. Studies have shown that males and relatively tall and heavy individuals have larger vertebral anatomy including pedicles.27,29 This anatomy allows a higher standard deviation in pedicle screw trajectory and longer screws which makes it more likely for screw tips to cross the midline without a medial breach. Thoracic pedicles also have a medialized trajectory compared to the lumbar segments,13 making this radiographic finding more likely in the thoracic spine. Anatomical studies have also shown that the thoracic spine has thicker medial cortices.5,12 The patient presented here had particularly dense bone and probing of the pedicle tracts was more definitive than usual. This type of reassuring tactile feedback should discourage the use of postoperative CT in the absence of other concerning findings. Additionally, as seen in this case, CT scan can be limited by metal artifact which may make it impossible to definitively confirm or deny a breach (though a clinically significant breach is more likely to be visible, even in the setting of metal artifact).

Far-lateral or ventral starting position (VSP) for PS placement allows an increase in maximal insertional arc (MIA), which is the screw angle from the most lateral to medial trajectory in the axial plane without causing a pedicle breach.16 In the case presented here, pedicle screw starting points throughout the levels with crossing screw tips were somewhat lateral, particularly on the right. This positioning allowed relative medialization of the screw tips. When utilizing a VSP, there should be less concern about screw tips that cross the midline in the absence of other issues.

Pedicle screw placement should always be critically evaluated by multiple modalities. Understanding how to weigh these modalities allows informed decisions about the need for further workup. Our case demonstrates that with a large patient and relatively lateral starting points, there can be low suspicion of a medial wall breach if a screw crosses the midline but there are no other concerning findings perioperatively (e.g., probing pedicle walls,
IONM, postoperative neurologic exam, cardiovascular status, etc.). Thus, a CT scan in this circumstance may be of low utility.

References

16. Lin JD, Wei C, Shillingford JN, et al. Evaluation of a more ventral starting point for thoracic pedicle screws: higher maximal insertion arc and more medial and safer

28. Zhu, Feng MD; Sun, Xu MD; Qiao, Jun PhD; Ding, Yitao MD; Zhang, Bing MD; Qiu, Yong MD Misplacement Pattern of Pedicle Screws in Pediatric Patients With Spinal Deformity, *Journal of Spinal Disorders and Techniques*: December 2014 - Volume 27 - Issue 8 - p 431-435 doi: 10.1097/BSD.0b013e31828d6a1b