Arthrodesis of the First Metatarsophalangeal Joint in Adolescents with Cerebral Palsy

Min Jia Tang, MBBS1; Ken Ye, MBBS, PhD1; Samuel K. Van de Velde, MD, PhD2; Erich Rutz, MD, PhD3; Kerr Graham, MD, FRACS1

1Orthopaedic Department, The Royal Children’s Hospital, Parkville, Victoria, Australia; 2Columbia University Medical Center, New York, NY; 3The Hugh Williamson Gait Analysis Laboratory, The Royal Children’s Hospital, Parkville, Victoria, Australia

Abstract:
Symptomatic hallux valgus (HV) and hallux flexus (HF) affect 2% of adolescents with cerebral palsy. Due to the high recurrence rate and lower patient satisfaction after non-fusion surgery, it is generally accepted that fusion of the first metatarsophalangeal joint (1st MTPJ fusion) is the primary treatment of choice in symptomatic bunions. In this paper, we describe our surgical technique which we adapted from the technique described by Coughlin and colleagues—preparation of the joint surfaces using cup and cone reamers and fixation with a robust, dorsal locking plate. The use of these plates has allowed accurate alignment of the fusion and early mobilisation after surgery. We have adopted plate fixation as our primary means of fixation for symptomatic bunions in adolescents and young adults with cerebral palsy.

Key Concepts:
• Arthrodesis of the 1st MTPJ using cup and cone reamers and a dorsal plate is effective in managing symptomatic hallux valgus and hallux flexus in adolescents with cerebral palsy.
• Soft tissue releases and corrective osteotomies alone yield unpredictable results and may require salvage by fusion.
• Benefits of arthrodesis using this technique include stable fixation and early weightbearing.
• Care must be taken to avoid malalignment of the locking plate and excessive shortening of the fusion construct when reaming osteoporotic bone.

Introduction
Symptomatic bunions affect approximately 2% of the population with cerebral palsy (CP).1 Deformity usually starts in the first decade of life, but symptoms may be delayed until the second decade, usually after puberty.2 Van de Velde and colleagues described two principal types of bunions in the cerebral palsy population. Hallux valgus (HV) presents with pain and swelling over a medial callosity in ambulatory adolescents (GMFCS I-III). Hallux flexus (HF) or dorsal bunion presents with pain and inflammation over the dorsum of the first MTP joint in non-ambulatory adolescents (GMFCS IV and V) (Figure 1).1 While much has been published on the management of hallux valgus in CP, the literature on management of hallux flexus in adolescents with CP is limited.1-6 We describe a technique for arthrodesis of the 1st MTPJ for the management of hallux valgus and hallux flexus, which we have found to be reliable and reproducible.
Description of the Method

A curved dorsal incision of approximately 6–8 cm is made, extending from the interphalangeal joint of the hallux proximally across the 1st MTPJ and along the axis of the 1st metatarsal (Figure 2). The incision is deepened through the subcutaneous layers taking care to identify and protect cutaneous nerves. The extensor hallucis longus (EHL) tendon is protected and retracted laterally, followed by a longitudinal capsulotomy of the 1st MTPJ. The joint surfaces are exposed by release of the collateral ligaments and the plantar plate.

A threaded guide wire is inserted proximally into the first metatarsal, through the center of the articular surface. If there is a significant exostosis, this is removed using a cookie-cutter circular reamer. A concave reamer of appropriate size is used to remove the articular cartilage from the head of the first metatarsal. It is important to remove all the articular cartilage but not to remove the strong subchondral bone. In patients with osteopenia from limited weight-bearing, it is easy to remove too much bone, resulting in excessive shortening and impairing the stability of the fixation. The base of the proximal phalanx is prepared using a similar method with a concave reamer (Figure 3).

Following preparation of the joint surfaces, a trial reduction is performed to ensure that the joint surfaces are congruent, that they can be compressed together, and that suitable alignment of the first MTP joint can be achieved (Figure 4). In an ambulatory patient, the typical position of fusion is 20–30 degrees of dorsiflexion with a hallux valgus angle of 8–10 degrees.

An Acumed (Hillsboro, OR, USA) locking plate is chosen for the right or left foot as appropriate. These plates are pre-contoured for the right or left 1st MTPJ and have a pre-set dorsiflexion angle of either 4 or 9 degrees and lateral translation angle of 10 degrees. We routinely use plates with 9 degrees dorsiflexion and avoid plate bending which may interfere with locking screw engagement. The plate is placed dorsally over the first metatarsal, across the joint and extending onto the dorsum of the proximal phalanx, and temporarily fixed with plate tacks (PL-TACK) (see Figure 5). The position is checked clinically and with the fluoroscope.

It is important to place the plate precisely on the dorsal surface of the 1st metatarsal and proximal phalanx to ensure correct alignment for fusion. Progressive fixation is now undertaken, using a combination of both locking and non-locking screws. The final position of the plate and screw construct is checked fluoroscopically (Figure 6). It is essential to avoid screws protruding on the
plantar aspect of the metatarsal head or base of the proximal phalanx as these can become symptomatic and may require revision.

Following irrigation of the incision and the implant to remove all bone debris and fat, the tourniquet is deflated, haemostasis is secured, and the incision is closed in layers allowing the intact EHL tendon to be repositioned in its normal alignment, which will be over the top of the plate.

We recommend skin closure with interrupted 3.0 nylon sutures placed as mattress sutures, reasonably loose to accommodate for postoperative swelling. The incision is dressed with dressing gauze and a below-knee cast is applied with a firm foot plate to permit early weight-bearing. Patients are discharged on postoperative day 1, with advice to elevate both lower limbs for 7 to 10 days to reduce swelling and promote healing. Weight-bearing for transfers is allowed from day 1.

Postoperatively, the wound is inspected through a window in the cast at 2 weeks after surgery and sutures are removed. Weight-bearing as tolerated is permitted from day 10 in a below-knee walking cast. The cast is removed at six weeks after surgery when additional radiographs are obtained. It can be difficult to be certain that bony union has occurred. The concave and convex surfaces of the joints prevent easy visualization through the joint and there is little in the way of external callus. However, if the patient has no symptoms such as pain or swelling with weight-bearing, full weight-bearing is encouraged in the orthosis that has been used preoperatively. Further clinical and radiographic checks are made at 3 and 6 months after surgery.

**Comparison to Other Methods**

In our institution, we previously used planar preparation of the joint surfaces using a micro-sagittal saw, small osteotomes, and rongeurs. This method of joint preparation is slower and less precise than the use of cup and cone reamers.\(^9,10\) In addition, once planar surfaces have been prepared, adjustment is much more difficult if the position is not ideal during trial reduction. We consider the use of cup and cone reamers to be significantly faster and superior in terms of precision and adjustability than planar joint surface preparation.

With respect to other methods of internal fixation, we believe that fixation with K wires and screws is unreliable and not a good option in this population. Surgery is
typically performed after the pubertal growth spurt when adolescents need to be independent and resent being made once again dependent on outside help for mobility. In our experience, patients found it impossible to comply with long periods of non-weight-bearing after bilateral bunion surgery. This may have contributed to unpredictable postoperative outcomes.

The advantages of using a dorsal locking plate as opposed to previous generation plates (such as the Vitalium mandibular plate), is that the hallux valgus angle and dorsiflexion angle are pre-set and improve the precision of the arthrodesis so long as the plate is placed directly dorsally. In addition, the plates are stronger, and weight-bearing for transfers are allowed from day 1 and weight-bearing as tolerated from day 7–10, with early return to activity such as attending high school or college. Furthermore, dorsal locking plates are concave and have a low profile. They are asymptomatic in the majority of patients and rarely require removal.

Summary
Symptomatic bunions affect a significant proportion of adolescents with cerebral palsy, and arthrodesis of the 1st MTPJ has been reported in the literature as having the highest success rate in terms of relief of symptoms and correction of deformity. We recommend cup and cone reamers for joint preparation. These should be used carefully in osteopenic bone as it is easy to remove too much bone resulting in excessive shortening of the fusion construct. We use pre-contoured dorsal locking plates for fixation. This technique is reproducible and produces stable fixation allowing early weight-bearing, optimal alignment, high fusion rates, and reliable results for fusing the 1st MTPJ in the treatment of hallux valgus and hallux flexus in cerebral palsy.

Additional Links

References