The Contemporary Role for Hip Arthrodesis and Hip Replacement in Adolescents

Radomir Dimovski, MD and Ira Zaltz, MD

Children’s Hospital of Michigan, Detroit, MI

Abstract: Hip arthrodesis and arthroplasty are historically proven options for end-stage arthritis in the young patient. Currently, patient and surgeon related factors influence choice of treatment. Arthrodesis relieves arthritic pain and enables modified function with expected eventual transition to arthroplasty. Conversion arthroplasty following arthrodesis provides good outcome with significant functional gain. Primary total hip arthroplasty for young patients is increasingly accepted due to improvements and consistency of implantation and more patient-expected natural levels of function. Advances in arthroplasty implants have increased component survivorship, but studies are still needed to determine outcomes using modern implants. Data supporting arthrodesis or arthroplasty for young patients with end-stage hip arthritis requires further study. This article summarizes the dilemma, provides current data in order to help guide decision-making.

Key Concepts:
- End-stage hip arthritis in the young patient is an extremely challenging problem and one where long-term treatment options are limited.
- Hip arthrodesis can provide decades of pain relief for adolescents with unilateral hip arthrosis who may be a poor candidate (obesity, medical or social co-morbidities) for hip replacement. Later back and knee pain limits long term outcome.
- Hip arthroplasty is a good option for patients with the bilateral hip arthritis (e.g., sickle cell disease, chemotherapy-induced necrosis, inflammatory arthropathies); the desire for initial near normal hip motion is tempered by the uncertainty of implant survival and the need for multiple joint revisions.

The Modern Dilemma

Pediatric hip conditions resulting in end-stage hip arthritis have been surgically treated using either arthroplasty or arthrodesis in order to reduce pain and improve function. Decision-making between an arthrodesis or arthroplasty is complex and influenced by surgeon age, fellowship training and experience, and patient factors. In a recent survey of members of the Pediatric Orthopaedic Society of North America (POSNA) and the American Association of Hip and Knee Surgeons (AAHKS) clinical scenarios assessed surgeon preference for surgical management of end-stage unilateral hip arthritis in 18-year-old patients while varying patient gender, weight, and future job requirements. For each procedure, this survey stratified surgeons by age and consideration of the trade-offs between providing younger patients with more function as a young adult using a total hip arthroplasty with the possibility of hindering mobility later in
life due to a failed arthroplasty. Older surgeons preferred arthrodesis over arthroplasty, while 82% of those surveyed agreed with the proposition that successful arthrodesis is technically more difficult than arthroplasty. Surgeons who believed that revision of total hip arthroplasty (THA) later in life posed a significant problem were more likely to recommend arthrodesis, while those surgeons who valued function as a young adult leaned toward THA. Contemporary improvements in hip implants, as well as fellowship training in joint arthroplasty, appear to create bias toward total hip arthroplasty in young patients.1 The purpose of this article is to summarize the background and outline contemporary thought in order to provide guidance when arthrodesis or arthroplasty are treatment considerations for managing end-stage arthritis in the young hip.

Limits of Arthrodesis
Since the early 1980s, when and how to perform hip arthrodesis in the young patient with end-stage hip arthrodesis have a few studies with long-term follow-up that analyzes patient outcomes. Callaghan et al. reported at an average of 20-25 years following arthrodesis, 60% of patients complained of ipsilateral knee pain and/or back pain, and 25% of patients developed contralateral hip pain.2 The average age of these patients was 25.3 years at the time of fusion, and the etiology of these patients’ hip arthritis was primarily caused by infection. Sponseller et al., in a separate follow-up study averaging 39 years post-arthrodesis (range 31-55), also reported that in patients less than 35 years old at the time of hip arthrodesis, 57% of these patients developed low back pain, while 45% had knee pain though only 13% had been converted to total hip arthroplasty.3 Patients treated by hip arthrodesis were found to have average overall activity levels comparable to their age group, well preserved walking ability, and no severe limitations in sexual function. Of note, the etiology of many of these patients’ hip arthritis was linked to tuberculosis, which is less prevalent today. It is well accepted that hip arthrodesis is contraindicated in patients with the potential for early arthrosis of both hips such as bilateral AVN from systemic chemotherapy or blood dyscrasias such as sickle cell or Thalassemia. While hip arthrodesis still has a place in modern orthopaedics; it is generally understood that surgeon experience and patient expectations have evolved considerably, especially as technology has also evolved. It is hard for the young surgeon with extensive hip replacement training and who may have limited experience in arthrodesis to counsel a family for hip arthrodesis, especially when the parents remember Bo Jackson and his ability to return (for a few years) to professional athletics after a THR (Figure 1).

Immediate and Long-Term Limitations of THR
Though historical reports following arthrodesis suggest improvement in pain and function, the concept of

![Figure 1. Professional athlete Bo Jackson acknowledges the crowd following a home run after his primary THR for post-traumatic avascular necrosis. He has had at least two revision surgeries since then.](image-url)
providing a young patient with a total hip arthroplasty as an alternative to arthrodesis is appealing and increasingly accepted. However, the idealized goal of relieving pain, restoring function while preserving movement with THA is associated with specific risks and known complications. Factors related to previous hip surgery such as abductor deficiency, acetabular deformity following pelvic osteotomy, and proximal femoral deformity following osteotomy may lead to complications during and following THA. Relative contraindications to THA in youth include history of septic arthritis or ongoing infection, severe obesity, repetitive impact loading, strenuous manual labor employment, inability to follow instructions, and general irresponsibility.

Although early reports of long-term follow-up of hip arthrodesis patients showed promising results, complete immobilization of the hip joint increases strain on adjacent articulations such that knee and back pain are the most frequent reason for conversion of the fused hip to an arthroplasty. The negative consequences of arthrodesis can be both functional and biomechanical causing deterioration of adjacent joints as the movement of the kinetic chain is altered. The primary complaints following hip arthrodesis include back pain affecting both sedentary and active patients, and the eventual development of ipsilateral knee ligamentous laxity in the anteroposterior or mediolateral planes. Conversion of an arthrodesis to a THA can improve movement and function, but results may be affected by the arthrodesis technique. Most common sequelae affecting results of THA are persistent abductor insufficiency causing a Trendelenberg gait pattern and upper femoral deformity increasing complexity and longevity of THA. Despite functional limitations and structural consequences associated with a hip fusion, arthrodesis is still safe and effective for specific patients who are considered to be at increased risk for complications following THA.

Indications for Arthrodesis

Hip arthrodesis remains useful in young patients with unilateral end-stage hip arthritis in whom hip preservation methods may have failed or no longer provide promising prognosis. In children who have bone defects or soft tissue defects that may compromise insertion and stability of THA implants or those with neuromuscular conditions, arthrodesis may be the single best option to produce a functional, stable, and pain-free hip with less risk than an arthroplasty. Patients younger than 30 years old with previous hip surgeries resulting in excessive scar tissue or damage to abductor musculature, post-traumatic arthritis with bony defects, or post-infectious etiology appear to be strong candidates for hip arthrodesis versus arthroplasty. Those who have preexisting low back pain, contralateral hip osteoarthritis or deformity that may predispose to arthritis, or ipsilateral knee pain pose
are at risk for progression of symptoms following hip arthrodesis, and, therefore, may not be suitable arthrodesis candidates. Despite general bias against performing an arthrodesis in a female, outcomes of hip arthrodesis have not been shown to be gender-dependent as male and female patients report similar outcomes, neither reported difficulties in sexual function, and females do not report problems during childbirth. Nevertheless, there is current bias against arthrodesis due to the aforementioned structural and functional consequences, especially in females.

Technical Considerations for Arthrodesis

A functionally successful hip arthrodesis is highly correlated with precise limb alignment and position of fusion. Positioning of hip arthrodesis has shown superior outcomes in those patients who are fused between 15-30 degrees flexion, 0 degree of abduction and 10-15 degrees external rotation. Hip flexion may be tailored individually for patient-specific level of function with patients who spend more time in a seated position benefiting from greater flexion near 25-30 degrees while those who will be walking or standing more benefiting from being near 15 to 20 degrees of flexion. The angle of abduction or adduction is assessed by the anatomic axis of the femur relative to the horizontal axis of the pelvis.

Tip: Consider a trip to your local hardware store for a steel 16-inch x 2-foot T-square that can be sterilized and used intraoperatively to ensure appropriate abduction. For patients with leg length discrepancy greater than 4cm, limb lengthening after hip fusion or timed epiphysiosis of the contralateral limb are treatment options. Fusing a hip in slight abduction (10 degrees) can compensate for minor ipsilateral limb shortness.

Multiple hip arthrodesis techniques have been described. The Thompson Arthrodesis technique should be considered in younger or smaller stature patients (Figure 2). In this procedure, the femoral head and the acetabulum are decorticated, and the femur is fixed to the acetabulum with screws and iliac crest. The femur is positioned in the best position to optimize femoral acetabular fusion. A subtrochanteric osteotomy allows the limb to angled to optimal hip fusion position and decreased risk of fusion failure. **Tip:** It is important that while the femoral shaft is angled for optimal position that it doesn’t translate to a great degree and thus make a later THR more challenging. After osteotomy, the surgeon can drill a hole on each side of the osteotomy and use a 5-0 Ethibond suture to maintain rough alignment while the figure 3. Six months after Thompson Arthrodesis

Figure 3. Six months after Thompson Arthrodesis

Figure 4. Hip arthrodesis with a dynamic hip screw and supplementary screw fixation has the advantage of preserving the hip abductors, but fixation is not as secure in the acetabulum.
limb is held in a spica cast until both the fusion and the osteotomy heal (Figure 3).

Instrumented hip arthrodesis techniques include both trans-articular and a combination of trans- and extra-articular methods. Trans-articular methods include compression arthrodesis with muscle pedicle bone graft, dynamic hip screw (which preserves hip abductor unit) (Figure 4), and surgical dislocation of the hip with trochanteric flip osteotomy.15-18

Combined trans- with extra-articular methods include the Vancouver technique involving a lateral approach with cobra plate (Figure 5), and anterior plating through a modified Smith Peterson approach.12,19-22 Today, it is an accepted principle that the abductor musculature should be treated gently and preserved to protect function when the arthrodesis is converted to a hip arthroplasty. Most contemporary hip fusions are performed via an abductor-sparing anterior approach.

Authors Preferred Method: Anterior Approach

The goal of hip arthrodesis is to establish a functionally positioned hip, to preserve hip abductor musculature, and to protect the greater trochanter anatomy. In such a manner, when future conversion to THA becomes necessary to manage the biomechanical consequences of a fused hip, it can be accomplished in a more straightforward fashion. Suboptimal fusion positioning can cause gait disturbance and functional leg length discrepancy.13,23-25 The contemporary technique used for hip arthrodesis must protect hip abductor function and preserve trochanter anatomy as disruption during the arthrodesis may lead to increased rates of prosthetic dislocation related to component positioning or chronic limp related to abductor dysfunction. The anterior approach for arthrodesis works best with the highest reported union rate and acceptable patient functional outcome.5 As reported by Matta et al., at 2-year follow-up fusion rates
of 83% can be achieved without external fixation or casting while allowing patients to ambulate partial weight-bearing with crutches. In our institution, we prefer the anterior approach with ventral plating as it facilitates accurate limb positioning, enables compression fixation and results in high fusion rates while preserving proximal femoral blood supply and avoiding damage to abductor muscles and trochanter anatomy (Figure 6).

Technical Considerations for Arthroplasty

Similar to arthrodesis, the indication for an arthroplasty include pain and dysfunction associated with end-stage hip arthritis that cannot be successfully managed nonsurgically. THA may provide pain relief and restore function without significant short-term complications (Figure 7). When a patient is deemed to benefit from THA, the choice of implants is vast, and unfortunately long-term implant-specific follow-up is not available.

Recently, Van de Velde et al. reported cementless total hip arthroplasty in 18 patients younger than 16 years of age at a mean follow up of 3.8 years. They found that modified Merle d’Aubigne et Postel scores for pain, movement, and walking were all significantly improved following THA, and no revisions had been performed at
most recent follow-up with fixation and alignment maintained on radiographic evaluation. In this study, some patients who were wheelchair-bound prior to arthroplasty transitioned to unrestricted gait. Of note, in the 24 THAs performed in this study, four of the patients required bone grafting during THA for bone deficiency from developmental dysplasia and juvenile rheumatoid arthritis. Also, three of the 24 hips had a Trendelenburg gait at follow-up. Longer-term evaluation of these patients, specifically to address component survivorship, is not available. Although these outcomes are promising, total hip arthroplasty in the pediatric patient has been incompletely studied.

Recent advances in cementless THA seem to be promising, with further research needed to elucidate the best bearing surface choice for pediatric patients. A major concern in THA for young patients is the survivorship of implants, as these patients are expected to have high physical demands and long-life expectancies.

Implant bearing surfaces have changed drastically in the last few decades, with metal on metal falling out of favor as revision rates have been shown to exceed 57% at 5 years in patients under 30 years old. In a review of ideal bearing surfaces for young patients, Kamath et al. suggest that patients less than 30 years would have the best survivorship with decreased particle wear using ceramic-on-ceramic implants, but they do note that this must be investigated in longer-term studies. Liner fractures and squeaking may occur with ceramic-on-ceramic implants, and thus, some surgeons prefer the use of ceramic on highly crosslinked polyethylene. This combination has been shown to have lower revision rates in patients younger than 25 years compared to conventional polyethylene with a mean time to revision of 64 months. In their analysis of the Nordic Arthroplasty Registry Association (NARA) of 747 patients less than 21 years old undergoing total hip arthroplasty from 1995-2016, Halvorsen et al. found that the 15-year unadjusted survival rate for THA was 73% with aseptic loosening being the most common reason for revision. He also reported no significant difference in survival comparing cemented and cementless implants. The utilization of cementless implants with highly crosslinked polyethylene liners appears to hold promise for improving survivorship of THA in young patients.

Figure 7. A 10-year-old with Perthes disease undergoes hyper-containment to improve outcome. At 3 years postoperative, the hip is moderately painful and stiff. Her pain progressed, and at age 17 she underwent uncemented THR.
Current Recommendations

The combination of improvements in THA components and bearing surfaces and improvement and consistency of surgical technique due to increased fellowship training have influenced preferential utilization of total hip arthroplasty for young patients with end-stage hip arthritis. Although long-term studies following arthrodesis report favorable outcomes and longevity despite the eventual need for conversion, the use of hip arthrodesis in the pediatric and young adult population is decreasing. When evaluating a young patient with end-stage arthritis, important factors for consideration include level of function, body habitus and weight, neuromuscular status and abductor muscle quality, bony loss, etiology of arthritis and ability to responsibly comply with the limitation of a prosthetic joint (Table 1). Unfortunately, the surgeon’s dilemma persists. While properly performed and well-positioned hip arthrodesis provides consistent and reproducible outcomes, THA performed in young patients preserves movement and natural function but may require revision much earlier in life than an arthrodesis that will likely require conversion to THA. In the future, improved prosthesis survivorship data will be combined with patient expectation and demand data to refine the appropriate use of both arthrodesis and arthroplasty for the young arthritic patient.

Table 1: Considerations for Hip Fusion and Hip Replacement

<table>
<thead>
<tr>
<th>Relative Indications</th>
<th>Hip Fusion</th>
<th>Hip Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heavy Active Patient</td>
<td>Smaller Patient Low Demand</td>
</tr>
<tr>
<td></td>
<td>Poor Social Situations</td>
<td>Compliance with Hip Precautions</td>
</tr>
<tr>
<td></td>
<td>Deficient Bony and Muscular Anatomy</td>
<td>Bilateral Hip Disease</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Bilateral Hip Disease</td>
<td>History of Infection</td>
</tr>
<tr>
<td></td>
<td>Ipsilateral Knee Pathology</td>
<td>Deficient Bony and Muscular Anatomy</td>
</tr>
<tr>
<td></td>
<td>History of Back Pain/Pathology</td>
<td></td>
</tr>
</tbody>
</table>

References

